PR

WIRED WIRED

人工知能が「スタークラフト2」で人間に勝利、その闘いから見えた機械学習の次なる課題

Messenger

独自開発チップの威力

スタークラフトのようなヴィデオゲームは、チェスや囲碁と比べて数学的にはずっと複雑である。囲碁において考えられる局面数は、10の170乗通りある。これに対してスタークラフトは、最低でも10の270乗通りあると考えられている。

スタークラフトでユニットの構築や操作を実行するには、多くの選択やアクションが求められる。しかも闘う相手の動きが見えないまま、決定を下さなければならない。DeepMindはこれらの課題を、「Tensor Processing Unit(TPU)」と呼ばれる強力なコンピューターチップを利用して克服した。このチップは機械学習の処理に特化したもので、グーグルが独自開発したものだ。

このTPUで、戦場におけるどんなアクションが勝利につながるのかを解き明かすアルゴリズムを走らせた。AlphaStarはスタークラフトにおける人間同士の約50万の対戦を学習し、その対戦をコピーして仮想空間で闘わせながら“改良”し、繰り返すことで進化していった。これによって、200年分のゲームに相当する訓練をさせることができたのだという。

ただし、プレイヤーのMaNaを打ち負かしたAlphaStarは、決してオールラウンドではない。スタークラフトで選べる3つの種族のうち、現時点ではひとつだけにしか対応していないからだ。

機械学習システムの限界

人間では達成できないようなプレイ経験の蓄積のなかで、これまでAlphaStarはスタークラフトを違った観点から見ていた。MaNaのような人間のプレイヤーはマップの一部を見ているので、その瞬間に何が起きているのかをすべて把握するには、カメラで視点を切り替えていく必要がある。これに対してAlphaStarはゲームのマップ全体を俯瞰して見ていたので、何が起きているのかほぼすべて把握できたのだ。

またAlphaStarは、ユニットの状態を見守ったり狙いを定めたりする際に、マウスを握った人間のプレイヤーと比べて高い精度を保つことができていた。反応速度が遅いにもかかわらずである。

このような“但し書き”が付いたが、今回の対戦を観ていたジョージア工科大のリードルのような専門家たちは、DeepMindが出した成果に賞賛を送った。

「極めて印象的でした」と、独立系の研究機関であるOpenAIの唐杰(タン・ジィ)は言う。彼はeスポーツで人気のヴィデオゲーム「Dota 2」をAIに闘わせる研究に取り組んでおり、こうした研究は応用が利く可能性があるのだと指摘する。例えば、実際にOpenAIがDota 2の人間のプロと闘わせたAIのアルゴリズムやコードは、ロボットハンドをより軽快に動かすためにも応用できたのだという。

続きを読む

あなたへのおすすめ

PR

PR

PR

PR

ブランドコンテンツ