産経ニュース

【科学】高レベル廃棄物対策の切り札 放射能減らす「核変換」本格研究へ

ライフ ライフ

記事詳細

更新

【科学】
高レベル廃棄物対策の切り札 放射能減らす「核変換」本格研究へ

 核変換の仕組みはこうだ。長寿命の放射性元素を容器に入れて、中心部に鉛とビスマスからなる重金属の核破砕ターゲットを配置。ここに超電導加速器で光速の約90%に加速した陽子をぶつける。

 重金属から高速の中性子が飛び散るように発生し、放射性元素の原子核に衝突。核分裂が始まり、電子を放出しながら核種が変わるベータ崩壊を繰り返し、短寿命で毒性が低い物質に変わっていく。

 陽子は2年間当て続ける計画で、放射性元素は大半が短寿命化。理想的な反応が起きた部分は、放射能がない物質に変わる。

 研究を担当する同機構の大井川宏之核変換セクションリーダーは「ネプツニウム237の場合、10%未満は長寿命のまま残る可能性はあるが、多くは放射能のないルテニウム102とセシウム133に変換される」と話す。

鍵握る分別技術

 高レベル放射性廃棄物はこれまで、ひとまとめに加工してガラス固化体にされてきた。核変換を行う場合は目的の元素を取り出す分別が必要で、これが処理の効率化にもつながる。

 ルテニウムやロジウムなどの白金属は、分別により資源として再利用が可能に。ストロンチウムなどの発熱性元素を分別すれば、冷却時間や地上の保管面積、地層処分量を削減できる。この結果、高レベル廃棄物は貯蔵面積が従来の100分の1、容積が3分の1になり、貯蔵期間も約300年に短縮する。

 一方、分別は今後の技術的な課題でもある。高レベル廃棄物から目的の元素だけを抽出する実証実験はこれからで、実用化時は大規模な処理施設も求められる。また、重金属から高速の中性子を効率よく発生させるための陽子照射方法の研究も必要だ。

 大井川氏は「加速器は日本の得意分野であり、その技術を応用して課題を克服し、原子力の安全利用と廃棄物処分の効率化を目指したい」と話している。

「ライフ」のランキング